, ATtiny25-45-85, Elektronika 

ATtiny25-45-85

ATtiny25-45-85, Elektronika
[ Pobierz całość w formacie PDF ]
Features

High Performance, Low Power AVR
®
8-Bit Microcontroller
Advanced RISC Architecture
– 120 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
Non-volatile Program and Data Memories
– 2/4/8K Byte of In-System Programmable Program Memory Flash (ATtiny25/45/85)
Endurance: 10,000 Write/Erase Cycles
– 128/256/512 Bytes In-System Programmable EEPROM (ATtiny25/45/85)
Endurance: 100,000 Write/Erase Cycles
– 128/256/512 Bytes Internal SRAM (ATtiny25/45/85)
– Programming Lock for Self-Programming Flash Program and EEPROM Data
Security
Peripheral Features
– 8-bit Timer/Counter with Prescaler and Two PWM Channels
– 8-bit High Speed Timer/Counter with Separate Prescaler
2 High Frequency PWM Outputs with Separate Output Compare Registers
Programmable Dead Time Generator
– USI – Universal Serial Interface with Start Condition Detector
– 10-bit ADC
4 Single Ended Channels
2 Differential ADC Channel Pairs with Programmable Gain (1x, 20x)
Temperature Measurement
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
Special Microcontroller Features
– debugWIRE On-chip Debug System
– In-System Programmable via SPI Port
– External and Internal Interrupt Sources
– Low Power Idle, ADC Noise Reduction, and Power-down Modes
– Enhanced Power-on Reset Circuit
– Programmable Brown-out Detection Circuit
– Internal Calibrated Oscillator
I/O and Packages
– Six Programmable I/O Lines
– 8-pin PDIP, 8-pin SOIC and 20-pad QFN/MLF
Operating Voltage
– 1.8 - 5.5V for ATtiny25/45/85V
– 2.7 - 5.5V for ATtiny25/45/85
Speed Grade
– ATtiny25/45/85V: 0 - 4 MHz @ 1.8 - 5.5V, 0 - 10 MHz @ 2.7 - 5.5V
– ATtiny25/45/85: 0 - 10 MHz @ 2.7 - 5.5V, 0 - 20 MHz @ 4.5 - 5.5V
Industrial Temperature Range
Low Power Consumption
– Active Mode:
1 MHz, 1.8V: 300
μ
A
– Power-down Mode:
0.1
μ
A at 1.8V
8-bit
Microcontroller
with 2/4/8K
Bytes In-System
Programmable
Flash
ATtiny25/V *
ATtiny45/V
ATtiny85/V *
* Preliminary
2586K–AVR–01/08
 1. Pin Configurations
Figure 1-1.
Pinout ATtiny25/45/85
PDIP/SOIC
(PCINT5/RESET/ADC0/dW) PB5
(PCINT3/XTAL1/CLKI/OC1B/ADC3) PB3
(PCINT4/XTAL2/CLKO/OC1B/ADC2) PB4
GND
1
2
3
4
8
7
6
5
VCC
PB2 (SCK/USCK/SCL/ADC1/T0/INT0/PCINT2)
PB1 (MISO/DO/AIN1/OC0B/OC1A/PCINT1)
PB0 (MOSI/DI/SDA/AIN0/OC0A/OC1A/AREF/PCINT0)
QFN/MLF
(PCINT5/RES
ET/ADC
0/dW) PB5
(PCINT3/XTAL1/CLKI/OC1B/ADC3) PB3
DNC
DNC
(PCINT4/XTAL2/CLKO/OC1B/ADC2) PB4
1
2
3
4
5
15
14
13
12
11
VCC
PB2 (SCK/USCK/SCL/ADC1/T0/INT0/PCINT2)
DNC
PB1 (MISO/DO/AIN1/OC0B/OC1A/PCINT1)
PB0 (MOSI/DI/SDA/AIN0/OC0A/OC1A/AREF/PCINT0)
NOTE: Bottom pad should be soldered to ground.
DNC: Do Not Connect
1.1 Pin Descriptions
1.1.1
VCC
Supply voltage.
1.1.2
GND
Ground.
1.1.3
Port B (PB5..PB0)
Port B is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B also serves the functions of various special features of the ATtiny25/45/85 as listed in
“Alternate Functions of Port B” on page 61
.
On ATtiny25, the programmable I/O ports PB3 and PB4 (pins 2 and 3) are exchanged in
ATtiny15 Compatibility Mode for supporting the backward compatibility with ATtiny15.
2
ATtiny25/45/85
2586K–AVR–01/08
ATtiny25/45/85
1.1.4
RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running and provided the reset pin has not been disabled. The min-
imum pulse length is given in
Table 21-4 on page 170
. Shorter pulses are not guaranteed to
generate a reset.
The reset pin can also be used as a (weak) I/O pin.
3
2586K–AVR–01/08
2. Overview
The ATtiny25/45/85 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced
RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny25/45/85
achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize
power consumption versus processing speed.
2.1 Block Diagram
Figure 2-1.
Block Diagram
8-BIT DATABUS
CALIBRATED
INTERNAL
OSCILLATOR
PROGRAM
COUNTER
STACK
POINTER
WATCHDOG
TIMER
TIMING AND
CONTROL
VCC
PROGRAM
FLASH
SRAM
MCU CONTROL
REGISTER
MCU STATUS
REGISTER
GND
INSTRUCTION
REGISTER
GENERAL
PURPOSE
REGISTERS
TIMER/
COUNTER0
X
INSTRUCTION
DECODER
Y
Z
TIMER/
COUNTER1
CONTROL
LINES
ALU
UNIVERSAL
INTERFACE
STATUS
REGISTER
INTERRUPT
UNIT
PROGRAMMING
LOGIC
DATA
EEPROM
OSCILLATORS
DATA REGISTER
PORT
B
DATA DIR.
REG.PORT B
ADC /
ANALOG COMPARATOR
PORT B DRIVERS
RESET
PB0-PB5
The AVR core combines a rich instruction set with 32 general purpose working registers. All 32
registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
4
ATtiny25/45/85
2586K–AVR–01/08
SERIAL
ATtiny25/45/85
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.
The ATtiny25/45/85 provides the following features: 2/4/8K byte of In-System Programmable
Flash, 128/256/512 bytes EEPROM, 128/256/256 bytes SRAM, 6 general purpose I/O lines, 32
general purpose working registers, one 8-bit Timer/Counter with compare modes, one 8-bit high
speed Timer/Counter, Universal Serial Interface, Internal and External Interrupts, a 4-channel,
10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and three software select-
able power saving modes. Idle mode stops the CPU while allowing the SRAM, Timer/Counter,
ADC, Analog Comparator, and Interrupt system to continue functioning. Power-down mode
saves the register contents, disabling all chip functions until the next Interrupt or Hardware
Reset. ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, to minimize
switching noise during ADC conversions.
The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip ISP Flash allows the Program memory to be re-programmed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code
running on the AVR core.
The ATtiny25/45/85 AVR is supported with a full suite of program and system development tools
including: C Compilers, Macro Assemblers, Program Debugger/Simulators and Evaluation kits.
5
2586K–AVR–01/08
[ Pobierz całość w formacie PDF ]
  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • dodatni.htw.pl