, AT89C51RC, Dokumenty i Nauka, Elektronika, Mikrokontrolery, z Flash'em, Atmel 

AT89C51RC

AT89C51RC, Dokumenty i Nauka, Elektronika, Mikrokontrolery, z Flash'em, Atmel
[ Pobierz całość w formacie PDF ]
Features

Compatible with MCS-51

Products

32K Bytes of Reprogrammable Flash Memory

Endurance: 1000 Write/Erase Cycles

4V to 5.5V Operating Range

Fully Static Operation: 0 Hz to 33 MHz

Three-level Program Memory Lock

512 x 8-bit Internal RAM

32 Programmable I/O Lines

Three 16-bit Timer/Counters

Eight Interrupt Sources

Programmable Serial Channel

Low-power Idle and Power-down Modes

Interrupt Recovery from Power-down Mode

Hardware Watchdog Timer

Dual Data Pointer

Power-off Flag
8-bit
Microcontroller
with 32K Bytes
Flash
Description
The AT89C51RC is a low-power, high-performance CMOS 8-bit microcomputer with
32K bytes of Flash programmable read only memory and 512 bytes of RAM. The
device is manufactured using Atmel’s high-density nonvolatile memory technology
and is compatible with the industry-standard 80C51 and 80C52 instruction set and
AT8 9C5 1RC
(continued)
Pin Configurations
PDIP
TQFP
(T2) P1.0
(T2EX) P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST
(RXD) P3.0
(TXD) P3.1
(INT0) P3.2
(INT1) P3.3
(T0) P3.4
(T1) P3.5
(WR) P3.6
(RD) P3.7
XTAL2
XTAL1
GND
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
VCC
P0.0 (AD0)
P0.1 (AD1)
P0.2 (AD2)
P0.3 (AD3)
P0.4 (AD4)
P0.5 (AD5)
P0.6 (AD6)
P0.7 (AD7)
EA/VPP
ALE/PROG
PSEN
P2.7 (A15)
P2.6 (A14)
P2.5 (A13)
P2.4 (A12)
P2.3 (A11)
P2.2 (A10)
P2.1 (A9)
P2.0 (A8)
P1.5
P1.6
P1.7
RST
(RXD) P3.0
NC
(TXD) P3.1
(INT0) P3.2
(INT1) P3.3
(T0) P3.4
(T1) P3.5
1
2
3
4
5
6
7
8
9
10
11
33
32
31
30
29
28
27
26
25
24
23
P0.4 (AD4)
P0.5 (AD5)
P0.6 (AD6)
P0.7 (AD7)
EA/VPP
NC
ALE/PROG
PSEN
P2.7 (A15)
P2.6 (A14)
P2.5 (A13)
PLCC
P1.5
P1.6
P1.7
RST
(RXD) P3.0
NC
(
TXD
) P3.1
(I
NT0
) P3.2
(INT1) P3.3
(T0) P3.4
(T1) P3.5
7
8
9
10
11
12
13
14
15
16
17
39
38
37
36
35
34
33
32
31
30
29
P0.4 (AD4)
P0.5 (AD5)
P0.6 (AD6)
P0
.7 (AD7)
EA/VPP
NC
ALE/P
ROG
PSEN
P2.7 (A15)
P2.6 (A14)
P2.5 (A13)
Rev. 1920A–08/00
1
    pinout. The on-chip Flash allows the program memory to
be user programmed by a conventional nonvolatile memory
programmer. A total of 512 bytes of internal RAM are avail-
able in the AT89C51RC. The 256-byte expanded internal
RAM is accessed via MOVX instructions after clearing bit 1
in the SFR located at address 8EH. The other 256-byte
RAM segment is accessed the same way as the Atmel
AT89-series and other 8052-compatible products. By com-
bining a versatile 8-bit CPU with Flash on a monolithic chip,
the Atmel AT89C51RC is a powerful microcomputer which
provides a highly-flexible and cost-effective solution to
many embedded control applications.
Block Diagram
P0.0 - P0.7
P2.0 - P2.7
V
CC
PORT 0 DRIVERS
PORT 2 DRIVERS
GND
RAM ADDR.
REGISTER
RAM
PORT 0
LATCH
PORT 2
LATCH
QUICK
FLASH
B
REGISTER
ACC
STACK
POINTER
PROGRAM
ADDRESS
REGISTER
TMP2
TMP1
BUFFER
ALU
PC
INCREMENTER
INTERRUPT, SERIAL PORT,
AND TIMER BLOCKS
PSW
PROGRAM
COUNTER
PSEN
A
LE/
PROG
EA / V
PP
RST
TIMING
AND
CONTROL
INSTRUCTION
REGISTER
DUAL
DPTR
WATCH
DOG
PORT 1
LATCH
PORT 3
LATCH
OSC
PORT 1 DRIVERS
PORT 3 DRIVERS
P1.0 - P1.7
P3.0 - P3.7
2
AT89C51RC
AT89C51RC
The AT89C51RC provides the following standard features:
32K bytes of Flash, 512 bytes of RAM, 32 I/O lines, three
16-bit timer/counters, a six-vector two-level interrupt archi-
tecture, a full duplex serial port, on-chip oscillator, and
clock circuitry. In addition, the AT89C51RC is designed
with static logic for operation down to zero frequency and
supports two software selectable power saving modes. The
Idle Mode stops the CPU while allowing the RAM,
timer/counters, serial port, and interrupt system to continue
functioning. The Power-down mode saves the RAM con-
tents but freezes the oscillator, disabling all other chip func-
tions until the next external interrupt or hardware reset.
Port 2
Port 2 is an 8-bit bidirectional I/O port with internal pull-ups.
The Port 2 output buffers can sink/source four TTL inputs.
When 1s are written to Port 2 pins, they are pulled high by
the internal pull-ups and can be used as inputs. As inputs,
Port 2 pins that are externally being pulled low will source
current (I
IL
) because of the internal pull-ups.
Port 2 emits the high-order address byte during fetches
from external program memory and during accesses to
external data memory that use 16-bit addresses (MOVX @
DPTR). In this application, Port 2 uses strong internal pull-
ups when emitting 1s. During accesses to external data
memory that use 8-bit addresses (MOVX @ RI), Port 2
emits the contents of the P2 Special Function Register.
Port 2 also receives the high-order address bits and some
control signals during Flash programming and verification.
Port 3
Port 3 is an 8-bit bidirectional I/O port with internal pull-ups.
The Port 3 output buffers can sink/source four TTL inputs.
When 1s are written to Port 3 pins, they are pulled high by
the internal pull-ups and can be used as inputs. As inputs,
Port 3 pins that are externally being pulled low will source
current (I
IL
) because of the pull-ups.
Port 3 also serves the functions of various special features
of the AT89C51RC, as shown in the following table.
Port 3 also receives some control signals for Flash pro-
gramming and verification.
Pin Description
VCC
Supply voltage.
GND
Ground.
Port 0
Port 0 is an 8-bit open drain bidirectional I/O port. As an
output port, each pin can sink eight TTL inputs. When 1s
are written to port 0 pins, the pins can be used as high-
impedance inputs.
Port 0 can also be configured to be the multiplexed low-
order address/data bus during accesses to external
program and data memory. In this mode, P0 has internal
pull-ups.
Port 0 also receives the code bytes during Flash program-
ming and outputs the code bytes during program verifica-
tion. External pull-ups are required during program
verification.
Port 1
Port 1 is an 8-bit bidirectional I/O port with internal pull-ups.
The Port 1 output buffers can sink/source four TTL inputs.
When 1s are written to Port 1 pins, they are pulled high by
the internal pull-ups and can be used as inputs. As inputs,
Port 1 pins that are externally being pulled low will source
current (I
IL
) because of the internal pull-ups.
In addition, P1.0 and P1.1 can be configured to be the
timer/counter 2 external count input (P1.0/T2) and the
timer/counter 2 trigger input (P1.1/T2EX), respectively, as
shown in the following table.
Port 1 also receives the low-order address bytes during
Flash programming and verification.
Port Pin
Alternate Functions
P3.0
RXD (serial input port)
P3.1
TXD (serial output port)
P3.2
INT0 (external interrupt 0)
P3.3
INT1 (external interrupt 1)
P3.4
T0 (timer 0 external input)
P3.5
T1 (timer 1 external input)
P3.6
WR (external data memory write strobe)
P3.7
RD (external data memory read strobe)
RST
Reset input. A high on this pin for two machine cycles while
the oscillator is running resets the device. This pin drives
High for 96 oscillator periods after the Watchdog times out.
The DISRTO bit in SFR AUXR (address 8EH) can be used
to disable this feature. In the default state of bit DISTRO,
the RESET HIGH out feature is enabled.
ALE/PROG
Address Latch Enable is an output pulse for latching the
low byte of the address during accesses to external
Port Pin
Alternate Functions
P1.0
T2 (external count input to Timer/Counter 2),
clock-out
P1.1
T2EX (Timer/Counter 2 capture/reload trigger
and direction control)
3
memory. This pin is also the program pulse input (PROG)
during Flash programming.
In normal operation, ALE is emitted at a constant rate of 1/6
the oscillator frequency and may be used for external
timing or clocking purposes. Note, however, that one
ALE pulse is skipped during each access to external data
memory.
If desired, ALE operation can be disabled by setting bit 0 of
SFR location 8EH. With the bit set, ALE is active only dur-
ing a MOVX or MOVC instruction. Otherwise, the pin is
weakly pulled high. Setting the ALE-disable bit has no
effect if the microcontroller is in external execution mode.
PSEN
Program Store Enable is the read strobe to external pro-
gram memory.
When the AT89C
51RC i
s executing code from external
program memory, PSEN is activated twice each machine
cycle, except that two PSEN activations are skipped during
each access to external data memory.
EA/VPP
External Access Enable. EA must be strapped to GND in
order to enable the device to fetch code from external pro-
gram memory locations starting at 0000H up t
o F
FFFH.
Note, however, that if lock bit 1 is programmed, EA will be
inte
rnally latched on reset.
EA should be strapped to V
CC
for internal program
executions.
This pin also receives the 12-volt programming enable volt-
age (V
PP
) during Flash programming.
XTAL1
Input to the inverting oscillator amplifier and input to the
internal clock operating circuit.
XTAL2
Output from the inverting oscillator amplifier.
Table 1.
AT89C51RC SFR Map and Reset Values
0F8H
0FFH
0F0H
B
00000000
0F7H
0E8H
0EFH
0E0H
ACC
00000000
0E7H
0D8H
0DFH
0D0H
PSW
00000000
0D7H
0C8H
T2CON
00000000
T2MOD
XXXXXX00
RCAP2L
00000000
RCAP2H
00000000
TL2
00000000
TH2
00000000
0CFH
0C0H
0C7H
0B8H
IP
XX000000
0BFH
0B0H
P3
11111111
0B7H
0A8H
IE
0X000000
0AFH
0A0H
P2
11111111
AUXR1
XXXXXXX0
WDTRST
XXXXXXXX
0A7H
98H
SCON
00000000
SBUF
XXXXXXXX
9FH
90H
P1
11111111
97H
88H
TCON
00000000
TMOD
00000000
TL0
00000000
TL1
00000000
TH0
00000000
TH1
00000000
AUXR
XXX00000
8FH
80H
P0
11111111
SP
00000111
DP0L
00000000
DP0H
00000000
DP1L
00000000
DP1H
00000000
PCON
0XXX0000
87H
4
AT89C51RC
 AT89C51RC
Special Function Registers
A map of the on-chip memory area called the Special Func-
tion Register (SFR) space is shown in
.
Note that not all of the addresses are occupied, and unoc-
cupied addresses may not be implemented on the chip.
Read accesses to these addresses will in general return
random data, and write accesses will have an indetermi-
nate effect.
User software should not write 1s to these unlisted loca-
tions, since they may be used in future products to invoke
new features. In that case, the reset or inactive values of
the new bits will always be 0.
Timer 2 Registers:
Control and status bits are contained in
registers T2CON (shown in
and T2MOD (shown in
) for Timer 2. The register pair (RCAP2H, RCAP2L)
are the Capture/Reload registers for Timer 2 in 16-bit cap-
ture mode or 16-bit auto-reload mode.
Interrupt Registers:
The individual interrupt enable bits
are in the IE register. Two priorities can be set for each of
the six interrupt sources in the IP register.
Table 2.
T2CON – Timer/Counter 2 Control Register
T2CON Address = 0C8H
Reset Value = 0000 0000B
Bit Addressable
Bit
TF2
EXF2
RCLK
TCLK
EXEN2
TR2
C/T2
CP/RL2
7
6
5
4
3
2
1
0
Symbol Function
TF2
Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK = 1
or TCLK = 1.
EXF2
Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. When
Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared
by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1).
RCLK
Receive clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in serial port
Modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.
TCLK
Transmit clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in serial port
Modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.
EXEN2
Timer 2 external enable. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer
2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.
TR2
Start/Stop control for Timer 2. TR2 = 1 starts the timer.
C/T2
Timer or counter select for Timer 2. C/T2 = 0 for timer function. C/T2 = 1 for external event counter (falling edge triggered).
CP/RL2 Capture/Reload select. CP/RL2 = 1 causes captures to occur on negative transitions at T2EX if EXEN2 = 1. CP/RL2 = 0
causes automatic reloads to occur when Timer 2 overflows or negative transitions occur at T2EX when EXEN2 = 1. When
either RCLK or TCLK = 1, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.
5
  [ Pobierz całość w formacie PDF ]
  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • dodatni.htw.pl