, AT89S52 datasheet, Mikrokontrolery, Micro datasheet's 

AT89S52 datasheet

AT89S52 datasheet, Mikrokontrolery, Micro datasheet's
[ Pobierz całość w formacie PDF ]
Features

Compatible with MCS
®
-51
Products
8K Bytes of In-System Programmable (ISP) Flash Memory
– Endurance: 10,000 Write/Erase Cycles
4.0V to 5.5V Operating Range
Fully Static Operation: 0 Hz to 33 MHz
Three-level Program Memory Lock
256 x 8-bit Internal RAM
32 Programmable I/O Lines
Three 16-bit Timer/Counters
Eight Interrupt Sources
Full Duplex UART Serial Channel
Low-power Idle and Power-down Modes
Interrupt Recovery from Power-down Mode
Watchdog Timer
Dual Data Pointer
Power-off Flag
Fast Programming Time
Flexible ISP Programming (Byte and Page Mode)
Green (Pb/Halide-free) Packaging Option
8-bit
Microcontroller
with 8K Bytes
In-System
Programmable
Flash
1. Description
The AT89S52 is a low-power, high-performance CMOS 8-bit microcontroller with 8K
bytes of in-system programmable Flash memory. The device is manufactured using
Atmel’s high-density nonvolatile memory technology and is compatible with the indus-
try-standard 80C51 instruction set and pinout. The on-chip Flash allows the program
memory to be reprogrammed in-system or by a conventional nonvolatile memory pro-
grammer. By combining a versatile 8-bit CPU with in-system programmable Flash on
a monolithic chip, the Atmel AT89S52 is a powerful microcontroller which provides a
highly-flexible and cost-effective solution to many embedded control applications.
AT89S52
The AT89S52 provides the following standard features: 8K bytes of Flash, 256 bytes
of RAM, 32 I/O lines, Watchdog timer, two data pointers, three 16-bit timer/counters, a
six-vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator,
and clock circuitry. In addition, the AT89S52 is designed with static logic for operation
down to zero frequency and supports two software selectable power saving modes.
The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and
interrupt system to continue functioning. The Power-down mode saves the RAM con-
tents but freezes the oscillator, disabling all other chip functions until the next interrupt
or hardware reset.
1919D–MICRO–6/08
2. Pin Configurations
2.1 40-lead PDIP
2.3 44-lead PLCC
(T2) P1.0
(T2 EX) P1.1
P1.2
P1.3
P1.4
(MOSI) P1.5
(MISO) P1.6
(SCK) P1.7
RST
(RXD) P3.0
(
TXD
) P3.1
(I
NT0
) P3.2
(INT1) P3.3
(T0) P3.4
(T1
) P3.5
(
WR
) P3.6
(RD) P3.7
XTAL2
XTAL1
GND
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
VCC
P0.0 (AD0)
P0.1 (AD1)
P0.2 (AD2)
P0.3 (AD3)
P0.4 (AD4)
P0.5 (AD5)
P0.6 (AD6)
P0
.7 (AD7)
EA/V
PP
ALE/P
ROG
PSEN
P2.7 (A15)
P2.6 (A14)
P2.5 (A13)
P2.4 (A12)
P2.3 (A11)
P2.2 (A10)
P2.1 (A9)
P2.0 (A8)
(MOSI) P1.5
(MISO) P1.6
(SCK) P1.7
RST
(RXD) P3.0
NC
(
TXD
) P3.1
(I
NT0
) P3.2
(INT1) P3.3
(T0) P3.4
(T1) P3.5
7
8
9
10
11
12
13
14
15
16
17
39
38
37
36
35
34
33
32
31
30
29
P0.4 (AD4)
P0.5 (AD5)
P0.6 (AD6)
P0
.7 (AD7)
EA/VPP
NC
ALE/P
ROG
PSEN
P2.7 (A15)
P2.6 (A14)
P2.5 (A13)
2.2 44-lead TQFP
(MOSI) P1.5
(MISO) P1.6
(SCK) P1.7
RST
(RXD) P3.0
NC
(
TXD
) P3.1
(
INT0
) P3.2
(INT1) P3.3
(T0) P3.4
(T1) P3.5
1
2
3
4
5
6
7
8
9
10
11
33
32
31
30
29
28
27
26
25
24
23
P0.4 (AD4)
P0.5 (AD5)
P0.6 (AD6)
P0
.7 (AD7)
EA/VPP
NC
ALE/P
ROG
PSEN
P2.7 (A15)
P2.6 (A14)
P2.5 (A13)
2
AT89S52
1919D–MICRO–6/08
 AT89S52
3. Block Diagram
P0.0 - P0.7
P2.0 - P2.7
V
CC
PORT 0 DRIVERS
PORT 2 DRIVERS
GND
RAM ADDR.
REGISTER
RAM
PORT 0
LATCH
PORT 2
LATCH
FLASH
B
REGISTER
ACC
STACK
POINTER
PROGRAM
ADDRESS
REGISTER
BUFFER
TMP2
TMP1
ALU
PC
INCREMENTER
INTERRUPT, SERIAL PORT,
AND TIMER BLOCKS
PSW
PROGRAM
COUNTER
PSEN
A
LE/
PROG
EA / V
PP
RST
TIMING
AND
CONTROL
INSTRUCTION
REGISTER
DUAL DPTR
WATCH
DOG
PORT 3
LATCH
PORT 1
LATCH
ISP
PORT
PROGRAM
LOGIC
OSC
PORT 3 DRIVERS
PORT 1 DRIVERS
P3.0 - P3.7
P1.0 - P1.7
3
1919D–MICRO–6/08
4. Pin Description
4.1 VCC
Supply voltage.
4.2 GND
Ground.
4.3 Port 0
Port 0 is an 8-bit open drain bidirectional I/O port. As an output port, each pin can sink eight TTL
inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs.
Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses
to external program and data memory. In this mode, P0 has internal pull-ups.
Port 0 also receives the code bytes during Flash programming and outputs the code bytes dur-
ing program verification.
External pull-ups are required during program verification
.
4.4 Port 1
Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 1 output buffers can
sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the inter-
nal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low
will source current (I
IL
) because of the internal pull-ups.
In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input
(P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively, as shown in the follow-
ing table.
Port 1 also receives the low-order address bytes during Flash programming and verification.
Port Pin
Alternate Functions
P1.0
T2 (external count input to Timer/Counter 2), clock-out
P1.1
T2EX (Timer/Counter 2 capture/reload trigger and direction control)
P1.5
MOSI (used for In-System Programming)
P1.6
MISO (used for In-System Programming)
P1.7
SCK (used for In-System Programming)
4.5 Port 2
Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 2 output buffers can
sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the inter-
nal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low
will source current (I
IL
) because of the internal pull-ups.
Port 2 emits the high-order address byte during fetches from external program memory and dur-
ing accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this
application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external
data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special
Function Register.
Port 2 also receives the high-order address bits and some control signals during Flash program-
ming and verification.
4
AT89S52
1919D–MICRO–6/08
AT89S52
4.6 Port 3
Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 3 output buffers can
sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the inter-
nal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low
will source current (I
IL
) because of the pull-ups.
Port 3 receives some control signals for Flash programming and verification.
Port 3 also serves the functions of various special features of the AT89S52, as shown in the fol-
lowing table.
Port Pin
Alternate Functions
P3.0
RXD (serial input port)
P3.1
TXD (serial output port)
P3.2
INT0 (external interrupt 0)
P3.3
INT1 (external interrupt 1)
P3.4
T0 (timer 0 external input)
P3.5
T1 (timer 1 external input)
P3.6
WR (external data memory write strobe)
P3.7
RD (external data memory read strobe)
4.7 RST
Reset input. A high on this pin for two machine cycles while the oscillator is running resets the
device. This pin drives high for 98 oscillator periods after the Watchdog times out. The DISRTO
bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default state of bit
DISRTO, the RESET HIGH out feature is enabled.
4.8 ALE/PROG
Address Latch Enable (ALE) is an output pulse for latching the low byte
of the a
ddress during
accesses to external memory. This pin is also the program pulse input (PROG) during Flash
programming.
In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be
used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped dur-
ing each access to external data memory.
If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set,
ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high.
Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.
5
1919D–MICRO–6/08
[ Pobierz całość w formacie PDF ]
  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • dodatni.htw.pl