,
AT89S52 datasheetAT89S52 datasheet, Mikrokontrolery, Micro datasheet's
[ Pobierz całość w formacie PDF ]
Features • Compatible with MCS ® -51 Products 8K Bytes of In-System Programmable (ISP) Flash Memory – Endurance: 10,000 Write/Erase Cycles 4.0V to 5.5V Operating Range Fully Static Operation: 0 Hz to 33 MHz Three-level Program Memory Lock 256 x 8-bit Internal RAM 32 Programmable I/O Lines Three 16-bit Timer/Counters Eight Interrupt Sources Full Duplex UART Serial Channel Low-power Idle and Power-down Modes Interrupt Recovery from Power-down Mode Watchdog Timer Dual Data Pointer Power-off Flag Fast Programming Time Flexible ISP Programming (Byte and Page Mode) Green (Pb/Halide-free) Packaging Option 8-bit Microcontroller with 8K Bytes In-System Programmable Flash 1. Description The AT89S52 is a low-power, high-performance CMOS 8-bit microcontroller with 8K bytes of in-system programmable Flash memory. The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the indus- try-standard 80C51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory pro- grammer. By combining a versatile 8-bit CPU with in-system programmable Flash on a monolithic chip, the Atmel AT89S52 is a powerful microcontroller which provides a highly-flexible and cost-effective solution to many embedded control applications. AT89S52 The AT89S52 provides the following standard features: 8K bytes of Flash, 256 bytes of RAM, 32 I/O lines, Watchdog timer, two data pointers, three 16-bit timer/counters, a six-vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator, and clock circuitry. In addition, the AT89S52 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning. The Power-down mode saves the RAM con- tents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset. 1919D–MICRO–6/08 2. Pin Configurations 2.1 40-lead PDIP 2.3 44-lead PLCC (T2) P1.0 (T2 EX) P1.1 P1.2 P1.3 P1.4 (MOSI) P1.5 (MISO) P1.6 (SCK) P1.7 RST (RXD) P3.0 ( TXD ) P3.1 (I NT0 ) P3.2 (INT1) P3.3 (T0) P3.4 (T1 ) P3.5 ( WR ) P3.6 (RD) P3.7 XTAL2 XTAL1 GND 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 VCC P0.0 (AD0) P0.1 (AD1) P0.2 (AD2) P0.3 (AD3) P0.4 (AD4) P0.5 (AD5) P0.6 (AD6) P0 .7 (AD7) EA/V PP ALE/P ROG PSEN P2.7 (A15) P2.6 (A14) P2.5 (A13) P2.4 (A12) P2.3 (A11) P2.2 (A10) P2.1 (A9) P2.0 (A8) (MOSI) P1.5 (MISO) P1.6 (SCK) P1.7 RST (RXD) P3.0 NC ( TXD ) P3.1 (I NT0 ) P3.2 (INT1) P3.3 (T0) P3.4 (T1) P3.5 7 8 9 10 11 12 13 14 15 16 17 39 38 37 36 35 34 33 32 31 30 29 P0.4 (AD4) P0.5 (AD5) P0.6 (AD6) P0 .7 (AD7) EA/VPP NC ALE/P ROG PSEN P2.7 (A15) P2.6 (A14) P2.5 (A13) 2.2 44-lead TQFP (MOSI) P1.5 (MISO) P1.6 (SCK) P1.7 RST (RXD) P3.0 NC ( TXD ) P3.1 ( INT0 ) P3.2 (INT1) P3.3 (T0) P3.4 (T1) P3.5 1 2 3 4 5 6 7 8 9 10 11 33 32 31 30 29 28 27 26 25 24 23 P0.4 (AD4) P0.5 (AD5) P0.6 (AD6) P0 .7 (AD7) EA/VPP NC ALE/P ROG PSEN P2.7 (A15) P2.6 (A14) P2.5 (A13) 2 AT89S52 1919D–MICRO–6/08 AT89S52 3. Block Diagram P0.0 - P0.7 P2.0 - P2.7 V CC PORT 0 DRIVERS PORT 2 DRIVERS GND RAM ADDR. REGISTER RAM PORT 0 LATCH PORT 2 LATCH FLASH B REGISTER ACC STACK POINTER PROGRAM ADDRESS REGISTER BUFFER TMP2 TMP1 ALU PC INCREMENTER INTERRUPT, SERIAL PORT, AND TIMER BLOCKS PSW PROGRAM COUNTER PSEN A LE/ PROG EA / V PP RST TIMING AND CONTROL INSTRUCTION REGISTER DUAL DPTR WATCH DOG PORT 3 LATCH PORT 1 LATCH ISP PORT PROGRAM LOGIC OSC PORT 3 DRIVERS PORT 1 DRIVERS P3.0 - P3.7 P1.0 - P1.7 3 1919D–MICRO–6/08 4. Pin Description 4.1 VCC Supply voltage. 4.2 GND Ground. 4.3 Port 0 Port 0 is an 8-bit open drain bidirectional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs. Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pull-ups. Port 0 also receives the code bytes during Flash programming and outputs the code bytes dur- ing program verification. External pull-ups are required during program verification . 4.4 Port 1 Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the inter- nal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I IL ) because of the internal pull-ups. In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively, as shown in the follow- ing table. Port 1 also receives the low-order address bytes during Flash programming and verification. Port Pin Alternate Functions P1.0 T2 (external count input to Timer/Counter 2), clock-out P1.1 T2EX (Timer/Counter 2 capture/reload trigger and direction control) P1.5 MOSI (used for In-System Programming) P1.6 MISO (used for In-System Programming) P1.7 SCK (used for In-System Programming) 4.5 Port 2 Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the inter- nal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I IL ) because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and dur- ing accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits and some control signals during Flash program- ming and verification. 4 AT89S52 1919D–MICRO–6/08 AT89S52 4.6 Port 3 Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the inter- nal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I IL ) because of the pull-ups. Port 3 receives some control signals for Flash programming and verification. Port 3 also serves the functions of various special features of the AT89S52, as shown in the fol- lowing table. Port Pin Alternate Functions P3.0 RXD (serial input port) P3.1 TXD (serial output port) P3.2 INT0 (external interrupt 0) P3.3 INT1 (external interrupt 1) P3.4 T0 (timer 0 external input) P3.5 T1 (timer 1 external input) P3.6 WR (external data memory write strobe) P3.7 RD (external data memory read strobe) 4.7 RST Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. This pin drives high for 98 oscillator periods after the Watchdog times out. The DISRTO bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default state of bit DISRTO, the RESET HIGH out feature is enabled. 4.8 ALE/PROG Address Latch Enable (ALE) is an output pulse for latching the low byte of the a ddress during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped dur- ing each access to external data memory. If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode. 5 1919D–MICRO–6/08 [ Pobierz całość w formacie PDF ] |
Podobne
|